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Prolegomenon

Fix X, a compact Hausdorff space, and let
C(X→R) =: C(X) be the space of continu-
ous fncs X→R, topologized by the supremum
norm. Our goal is to prove WAT (Weierstrass Ap-
proximation Thm), below. But first, we need:

1: Defn. A non-void subset L ⊂ C(X) is a good
lattice if: L is a lattice under the pointwise Min
and Max operations, i.e, the 6 relation. [So L is a
sublattice of

(((
C(X),Min,Max

)))
.] Further

a: L separates points. (I.e, for all distinct y, z ∈ X

there exists g ∈ L with g(y) 6= g(z).)

b: For all σ, τ ∈ R and f ∈ L:

σ · f() ∈ L. [Scaling.]

And τ + f() ∈ L. [Vertical translation.]

With a particular good lattice in mind, I’ll call
its members the good functions. For free we get:

c: Our L owns all the constant functions.

For by hyp. L is non-empty. Take an f ∈ L

and scale it by σ=0, to conclude that L owns the
zero-fnc. Now vertical translation gives us all the
constant-fncs. �

2: Two-point Proposition. In L, a good lattice:
For each function T :X→R, and each pair of points
y,z ∈ X, there is a good function g st.

g(y) = T (y) and g(z) = T (z) . ♦

Proof. If y = z, then T (y) = T (z) =: C is a com-
mon value. Let g be the constant-fnc, [x 7→ C].

Otherwise, y 6= z. Since L separates points,
there is a good f with f(y) 6= f(z). By adding
a constant, (1b), WLOG f(z) = 0. By scaling,
WLOG f(y) = 1. Using numbers Y := T (y) and
Z := T (z), the function

g() := Z + [Y − Z] · f()

is good. Moreover, g(y) = Z + [Y − Z] · 1 note
=== Y

and g(z) = Z + 0 equals Z, as desired. �

3: Lattice Lemma. Each good lattice L is sup-
norm dense in C(X→R). ♦

Proof. Fix a target fnc T ∈ C(X). Fixing a
posreal ε, we will produce a good h with

T () < h() < 2ε+ T () .3a:

It suffices, for each point z ∈ X, to be able to
produce a good function fz having

fz() < ε+ T () and
fz(z) = T (z) .

3b:

Why? Well, replacing fz() by ε+ fz() keeps fz
good, using (1b). And now

fz() 6 2ε+ T () with
fz(z) > T (z) .

†:

Consequently, the following “f Over T ” set,

Oz :=
{
x ∈ X

∣∣∣ fz(x) > T (x)
}
,

is open, and owns z. Thus {Oz | z ∈ X} is an
open cover of X. But X is compact, so there is a
finite list where Oz1 ∪ Oz2 ∪ . . . ∪ OzJ is all of X.
The Upshot: The good fnc

h := Max(fz1, fz2, . . . , fzJ )

automatically fulfills (3a).
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Creating (3b). Fix z. For each y ∈ X, proposi-
tion (2) gives us a fnc gy with

gy(y) = T (y) and
gy(z) = T (z) ,

and which is good. The “g Under T ” set

Uy :=
{
x ∈ X

∣∣∣ gy(x) < ε+ T (x)
}

is open, and owns y. So {Uy}y∈X is an open cover
of X. Some finitely many Uy1 ∪ Uy2 ∪ . . . ∪ UyK

cover X. Therefore the good fnc

fz := Min(gy1, gy2, . . . , gyK)

automatically fulfills (3b). �

We are now ready for the Weierstrass Approxi-
mation Theorem.

4: WAT Thm. On a compact Hausdorff space X,
consider a (real) sub-vectorspace V ⊂ C(X). Sup-
pose V satisfies the following:

a: Subspace V separates points of X.

b: f ∈ V =⇒ f 2 ∈ V. (f times f .)

c: 1X ∈ V. (“The constants are in V.”)

Then V is an algebra under pointwise multiplica-
tion [f, g ∈ V =⇒ f · g ∈ V] and is sup-norm dense
in C(X). ♦

Proof of WAT. With f, g ∈ V then f+g ∈ V.
Since V is sealed under squaring,

V 3 1
2
·
[
[f+g]2 − f 2 − g2

]
note
=== f · g .

Thus V is an algebra of fncs.
OnC(X), addition is cts [Exer. 1a], so theC(X)-

closure of V is a sub-vectorspace [Exer. 1b]. This
closure automatically satisfies (4a) and (4c).

Since X is compact, each f ∈ C(X) is bounded.
It follows that the squaring map [f 7→ f 2] is sup-
norm cts [Exer. 2a]. It further follows [Exer. 2b] that

the squaring property (4(b)) holds for the closure
of V. So WLOG

�� ��V is closed .
Let’s show that V is a good lattice. Proper-

ties (1a,b,1) are automatic. Calling the functions
in V nice , our goal is

f, g each nice =⇒ Max{f, g} is nice .G1:

(Since Min{f, g} equals the negative of Max{ f, g}, we
get Min{} for free.) Evidently

Max{f, g} = 1
2

[
f+g + |f−g|

]
.

This will be in V if |f−g| is. So our goal is to
show that

Algebra V is sealed under the absolute-
value operation.G2:

Note that |f | =
√
f 2 , for an arbitrary fnc f :X→R

inV. Since f 2 is nice, need but show the following,
where we’ve renamed f 2 to f :

If f>0 is nice, then
√
f is nice.G3:

Since X is compact, the range of f lies inside
some compact interval J ⊂ R. Now show [Exer. 3]
that the-below Square-root Theorem is sufficient to
finish the proof. �

5: Unif-conv Composition Lemma. Consider
sets Z, Y and MSes X and Ω. For maps
fn, g:Y→X, suppose fn

unif.−−→ g, as n→∞. Then
the following hold.

i : For β:Z→Y an arbitrary function, sequence
[fn ◦ β]

unif.−−−→
n→∞

[g ◦ β].

ii : Suppose map α:X→Ω is uniformly contin-
uous. Then functions [α ◦ fn] converge uni-
formly to [α ◦ g], as n→∞. ♦

Proof. Exercise. �
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6: Square-root Theorem. Fix a compact interval
J ⊂ [0,∞). Then the sqrt-function on J is a
uniform limit of polynomials on J . ♦

Proof. By a change-of-variable, WLOG J := [0, 1].
ISTShow [Exer. 4] that on J , this fnc

h(T ) := 1−
√

1− T

is a uniform-limit of polynomials.
Thus, by our Nested uniform-convergence thm,

ISTFind polynomials P0 6 P1 6 . . . H which con-
verge pointwise to H.

(Rest of proof in class. Use Verhulst dia-
grams.) �
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