

Weierstrass approx Thm beginning part: Functional

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 17 November, 2017 (at 12:02)

Prolegomenon

Fix X , a compact Hausdorff space, and let $\mathbf{C}(X \rightarrow \mathbb{R}) =: \mathbf{C}(X)$ be the space of continuous fncs $X \rightarrow \mathbb{R}$, topologized by the **supremum norm**. Our goal is to prove WAT (Weierstrass Approximation Thm), below. But first, we need:

1: Defn. A non-void subset $\mathcal{L} \subset \mathbf{C}(X)$ is a **good lattice** if: \mathcal{L} is a lattice under the pointwise Min and Max operations, i.e, the \leq relation. [So \mathcal{L} is a sublattice of $(\mathbf{C}(X), \text{Min}, \text{Max})$.] Further

a: \mathcal{L} separates points. (I.e, for all distinct $y, z \in X$ there exists $g \in \mathcal{L}$ with $g(y) \neq g(z)$.)

b: For all $\sigma, \tau \in \mathbb{R}$ and $f \in \mathcal{L}$:

$$\sigma \cdot f() \in \mathcal{L}. \quad [\text{Scaling.}]$$

$$\text{And } \tau + f() \in \mathcal{L}. \quad [\text{Vertical translation.}]$$

With a particular good lattice in mind, I'll call its members the **good functions**. For free we get:

c: Our \mathcal{L} owns all the constant functions.

For by hyp. \mathcal{L} is non-empty. Take an $f \in \mathcal{L}$ and scale it by $\sigma=0$, to conclude that \mathcal{L} owns the zero-fnc. Now vertical translation gives us all the constant-fncs. \square

2: Two-point Proposition. *In \mathcal{L} , a good lattice: For each function $T: X \rightarrow \mathbb{R}$, and each pair of points $y, z \in X$, there is a good function g st.*

$$g(y) = T(y) \quad \text{and} \quad g(z) = T(z). \quad \diamond$$

Proof. If $y = z$, then $T(y) = T(z) =: C$ is a common value. Let g be the constant-fnc, $[x \mapsto C]$.

Otherwise, $y \neq z$. Since \mathcal{L} separates points, there is a good f with $f(y) \neq f(z)$. By adding a constant, (1b), WLOG $f(z) = 0$. By scaling, WLOG $f(y) = 1$. Using numbers $Y := T(y)$ and $Z := T(z)$, the function

$$g() := Z + [Y - Z] \cdot f()$$

is good. Moreover, $g(y) = Z + [Y - Z] \cdot 1 \stackrel{\text{note}}{=} Y$ and $g(z) = Z + 0$ equals Z , as desired. \spadesuit

3: Lattice Lemma. *Each good lattice \mathcal{L} is sup-norm dense in $\mathbf{C}(X \rightarrow \mathbb{R})$.* \diamond

Proof. Fix a target fnc $T \in \mathbf{C}(X)$. Fixing a posreal ε , we will produce a good h with

$$3a: \quad T() < h() < 2\varepsilon + T().$$

It suffices, for each point $z \in X$, to be able to produce a good function f_z having

$$3b: \quad \begin{aligned} f_z() &< \varepsilon + T() \quad \text{and} \\ f_z(z) &= T(z). \end{aligned}$$

Why? Well, replacing $f_z()$ by $\varepsilon + f_z()$ keeps f_z good, using (1b). And now

$$\dagger: \quad \begin{aligned} f_z() &\leq 2\varepsilon + T() \quad \text{with} \\ f_z(z) &> T(z). \end{aligned}$$

Consequently, the following “ f Over T ” set,

$$\mathcal{O}_z := \{x \in X \mid f_z(x) > T(x)\},$$

is open, and owns z . Thus $\{\mathcal{O}_z \mid z \in X\}$ is an *open cover* of X . But X is compact, so there is a finite list where $\mathcal{O}_{z_1} \cup \mathcal{O}_{z_2} \cup \dots \cup \mathcal{O}_{z_J}$ is all of X . The Upshot: The *good* fnc

$$h := \text{Max}(f_{z_1}, f_{z_2}, \dots, f_{z_J})$$

automatically fulfills (3a).

Creating (3b). Fix z . For each $y \in X$, proposition (2) gives us a fnc g_y with

$$\begin{aligned} g_y(y) &= T(y) \quad \text{and} \\ g_y(z) &= T(z), \end{aligned}$$

and which is good. The “ g Under T ” set

$$\mathcal{U}_y := \{x \in X \mid g_y(x) < \varepsilon + T(x)\}$$

is open, and owns y . So $\{\mathcal{U}_y\}_{y \in X}$ is an open cover of X . Some finitely many $\mathcal{U}_{y_1} \cup \mathcal{U}_{y_2} \cup \dots \cup \mathcal{U}_{y_K}$ cover X . Therefore the *good* fnc

$$f_z := \text{Min}(g_{y_1}, g_{y_2}, \dots, g_{y_K})$$

automatically fulfills (3b). ◆

We are now ready for the Weierstrass Approximation Theorem.

4: WAT Thm. *On a compact Hausdorff space X , consider a (real) sub-vectorspace $\mathbf{V} \subset \mathbf{C}(X)$. Suppose \mathbf{V} satisfies the following:*

- a: Subspace \mathbf{V} separates points of X .
- b: $f \in \mathbf{V} \implies f^2 \in \mathbf{V}$. (f times f .)
- c: $1_X \in \mathbf{V}$. (“The constants are in \mathbf{V} .”)

Then \mathbf{V} is an algebra under pointwise multiplication $[f, g \in \mathbf{V} \implies f \cdot g \in \mathbf{V}]$ and is sup-norm dense in $\mathbf{C}(X)$. ◆

Proof of WAT. With $f, g \in \mathbf{V}$ then $f+g \in \mathbf{V}$. Since \mathbf{V} is sealed under squaring,

$$\mathbf{V} \ni \frac{1}{2} \cdot [(f+g)^2 - f^2 - g^2] \stackrel{\text{note}}{=} f \cdot g.$$

Thus \mathbf{V} is an algebra of fncs.

On $\mathbf{C}(X)$, addition is cts [Exer. 1a], so the $\mathbf{C}(X)$ -closure of \mathbf{V} is a sub-vectorspace [Exer. 1b]. This closure automatically satisfies (4a) and (4c).

Since X is compact, each $f \in \mathbf{C}(X)$ is bounded. It follows that the squaring map $[f \mapsto f^2]$ is sup-norm cts [Exer. 2a]. It further follows [Exer. 2b] that

the squaring property (4b)) holds for the closure of \mathbf{V} . So WLOG (V is closed).

Let’s show that \mathbf{V} is a good lattice. Properties (1a,b,1) are automatic. Calling the functions in \mathbf{V} *nice*, our goal is

G1: f, g each nice $\implies \text{Max}\{f, g\}$ is nice.

(Since $\text{Min}\{f, g\}$ equals the negative of $\text{Max}\{-f, -g\}$, we get $\text{Min}\{\}$ for free.) Evidently

$$\text{Max}\{f, g\} = \frac{1}{2} [f+g + |f-g|].$$

This will be in \mathbf{V} if $|f-g|$ is. So our goal is to show that

G2: *Algebra \mathbf{V} is sealed under the absolute-value operation.*

Note that $|f| = \sqrt{f^2}$, for an arbitrary fnc $f: X \rightarrow \mathbb{R}$ in \mathbf{V} . Since f^2 is nice, need but show the following, where we’ve renamed f^2 to f :

G3: *If $f \geq 0$ is nice, then \sqrt{f} is nice.*

Since X is compact, the range of f lies inside some compact interval $J \subset \mathbb{R}$. Now show [Exer. 3] that the below Square-root Theorem is sufficient to finish the proof. ◆

5: Unif-conv Composition Lemma. *Consider sets Z, Y and MSes X and Ω . For maps $f_n, g: Y \rightarrow X$, suppose $f_n \xrightarrow{\text{unif.}} g$, as $n \rightarrow \infty$. Then the following hold.*

i: For $\beta: Z \rightarrow Y$ an arbitrary function, sequence $[f_n \circ \beta] \xrightarrow[n \rightarrow \infty]{\text{unif.}} [g \circ \beta]$.

ii: Suppose map $\alpha: X \rightarrow \Omega$ is uniformly continuous. Then functions $[\alpha \circ f_n]$ converge uniformly to $[\alpha \circ g]$, as $n \rightarrow \infty$. ◆

Proof. Exercise. ◆

6: Square-root Theorem. Fix a compact interval $J \subset [0, \infty)$. Then the $\sqrt{\cdot}$ -function on J is a uniform limit of polynomials on J . \diamond

Proof. By a change-of-variable, WLOG $J := [0, 1]$.

ISTShow [Exer. 4] that on J , this fnc

$$h(T) := 1 - \sqrt{1 - T}$$

is a uniform-limit of polynomials.

Thus, by our Nested uniform-convergence thm, ISTFind polynomials $P_0 \leq P_1 \leq \dots H$ which converge pointwise to H .

(Rest of proof in class. Use Verhulst diagrams.) \diamond

Filename: Problems/Analysis/Functional/weierstrass-approx^.latex
 As of: Sunday 06Sep2015. Typeset: 17Nov2017 at 12:02.