Weierstrass approx Thm
beginning part: Functional

Jonathan L.F. King
University of Florida, Gainesville FL 82611-2082, USA
squash@ufl.edu
Webpage http://squash.1gainesville.com/

17 November, 2017 (at 12:02)

Prolegomenon

Fix X, a compact Hausdorff space, and let
C(X—=R) = C(X) be the space of continu-
ous fncs X—R, topologized by the supremum
norm. Our goal is to prove WAT (Weierstrass Ap-
proximation Thm), below. But first, we need:

1: Defn. A non-void subset £ C C(X) is a good
lattice if: £ is a lattice under the pointwise Min
and Max operations, i.e, the < relation. [So £ is a
sublattice of (C(X),Min,Max).| Further

a: L separates points. (Le, for all distinct y,z € X
there exists g € £ with g(y) # g(2).)
b: For all o,7 € R and f € £:
o-f() € L. [Scaling|
And 7+ f() € L. [Vertical translation. |

With a particular good lattice in mind, I'll call
its members the good functions. For free we get:

c: Our £ owns all the constant functions.

For by hyp. £ is non-empty. Take an f € £
and scale it by 0=0, to conclude that £ owns the
zero-fnc. Now vertical translation gives us all the
constant-fncs. O

2: Two-point Proposition.  In £, a good lattice:
For each function T': X —R, and each pair of points
Y,z € X, there is a good function g st.

gy) = T(y) and g(z) = T(z). O
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Proof. If y = z, then T'(y) = T'(z) =: C is a com-
mon value. Let g be the constant-fnc, [z +— C].

Otherwise, y # z. Since L separates points,
there is a good f with f(y) # f(z). By adding
a constant, (1b), WLOG f(z) = 0. By scaling,
WLOG f(y) = 1. Using numbers Y := T'(y) and
Z =T(z), the function

9() =

is good. Moreover, g(y) = Z+ [V — Z] -1 22y
and g(z) = Z + 0 equals Z, as desired. ¢

Z + [Y-2]-f0

3: Lattice Lemma.  FEach good lattice £ is sup-
norm dense in C(X—R). O

Proof.  Fix a target fnc T € C(X). Fixing a

posreal €, we will produce a good h with
3az T() < h() < 2¢+T().

It suffices, for each point z € X, to be able to
produce a good function f, having

[0 < e+T()
f(z) = T(2).

Why? Well, replacing f.() by e+ f.() keeps f.
good, using (1b). And now

[0 < 2e4T()
f.(z2) > T(z).

Consequently, the following “f Over T set,

{re X | L) >Tw)},

and
3b:

with

0, =

is open, and owns z. Thus {0, | z € X} is an
open cover of X. But X is compact, so there is a
finite list where O,, UO,, U...UQO,, is all of X.
The Upshot: The good fnc

h = Max(f., f.,,--

automatically fulfills (3a).
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Creating (3b). Fix z. For each y € X, proposi-
tion (2) gives us a fnc g, with

9y(y) = and
gy(2) =
and which is good. The “g Under 7" set

u, = {xEX’gy(x) < 8+T(I)}

is open, and owns y. So {U,},ecx is an open cover

of X. Some finitely many U,, UU,, U... U U,
cover X. Therefore the good fnc

. = Mm(gyv yss - - - 7gyK)
automatically fulfills (3b). ¢

We are now ready for the Weierstrass Approxi-
mation Theorem.

4: WAT Thm. On a compact Hausdorff space X,
consider a (real) sub-vectorspace V.C C(X). Sup-
pose V satisfies the following:

a: Subspace V separates points of X.
b: feV = f2 e V. (f times f)
¢: 1x € V. (“The constants are in V.”)

Then V is an algebra under pointwise multiplica-
tion |f,g€ V = f-g € V| and is sup-norm dense

in C(X). O

Proof of WAT.  With f,g € V then f+g € V.

Since V is sealed under squaring,

Vo L[l - - 2 g

Thus V is an algebra of fncs.

On C(X), addition is cts [Exer. 1a], so the C(X)-
closure of V is a sub-vectorspace |Exer. 1b]. This
closure automatically satisfies (4a) and (4c).

Since X is compact, each f € C(X) is bounded.
It follows that the squaring map [f + f?] is sup-
norm cts [Exer. 2a]. It further follows [Exer. 2b| that
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the squaring property (4(b)) holds for the closure

of V. So WLOG m

Let’s show that V is a good lattice. Proper-
ties (la,b,1) are automatic. Calling the functions
in 'V nice, our goal is

G1l:  f,g each nice = Max{f, g} is nice.

(Since Min{f, g} equals the negative of Max{~f,~g}, we
get Min{} for free.) Evidently

Max{f,g} = 3[f+g + |f—gl].

This will be in V if |f—g] is.
show that

So our goal is to

Algebra V is sealed under the absolute-
value operation.

G2:

Note that | f| = v/f?, for an arbitrary fnc f: X —R
in V. Since f? is nice, need but show the following,
where we’ve renamed f? to f:

G3:  If f>0 is nice, then \/f is nice.

Since X is compact, the range of f lies inside
some compact interval J C R. Now show [Exer. 3]
that the-below Square-root Theorem is sufficient to

finish the proof. ¢
5: Unif-conv Composition Lemma. Consider
sets Z,Y and MSes X and ().  For maps

fn,g:Y—X, suppose f, unif., g, asn — oo. Then
the following hold.

iz For :Z—Y an arbitrary function, sequence

[f 0 B]=2=5[g 0 ).

itz Suppose map «: X —€ is uniformly contin-

uous. Then functions [« o f,] converge uni-
formly to [ o g, as n — oc. O
Proof. Exercise. ¢
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6: Square-root Theorem. Fix a compact interval
J C [0,00). Then the sqrt-function on J is a
uniform limit of polynomials on J. O

Proof. By a change-of-variable, WLOG J := [0, 1].
ISTShow [Exer. 4] that on J, this fnc

WT) = 1-v1—-T

is a uniform-limit of polynomials.

Thus, by our Nested uniform-convergence thm,
ISTFind polynomials Py < P; < ... H which con-
verge pointwise to H.

(Rest of proof in class. Use Verhulst dia-
grams.) ¢
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